pds.api_client.models.pds4_metadata_ops_data_file module

PDS Registry Search API

Registry API enabling advanced search on PDS data and metadata. The API provides end-points to search for bundles, collections and any PDS products with advanced search queries. It also enables to browse the archive hierarchically downward (e.g. collection/s products) or upward (e.g. bundles containing a product).

The version of the OpenAPI document: 1.5.0 Contact: pds-operator@jpl.nasa.gov Generated by OpenAPI Generator (https://openapi-generator.tech)

Do not edit the class manually.

class pds.api_client.models.pds4_metadata_ops_data_file.Pds4MetadataOpsDataFile(*, opscreation_date: str | None = None, opsfile_name: str | None = None, opsfile_ref: str | None = None, opsfile_size: str | None = None, opsmd5_checksum: str | None = None, opsmime_type: str | None = None)[source]

Bases: BaseModel

classmethod from_dict(obj: Dict[str, Any] | None) Self | None[source]

Create an instance of Pds4MetadataOpsDataFile from a dict

classmethod from_json(json_str: str) Self | None[source]

Create an instance of Pds4MetadataOpsDataFile from a JSON string

model_config: ClassVar[ConfigDict] = {'populate_by_name': True, 'protected_namespaces': (), 'validate_assignment': True}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

model_fields: ClassVar[dict[str, FieldInfo]] = {'opscreation_date': FieldInfo(annotation=Union[Annotated[str, Strict(strict=True)], NoneType], required=False, alias='ops:creation_date', alias_priority=2), 'opsfile_name': FieldInfo(annotation=Union[Annotated[str, Strict(strict=True)], NoneType], required=False, alias='ops:file_name', alias_priority=2), 'opsfile_ref': FieldInfo(annotation=Union[Annotated[str, Strict(strict=True)], NoneType], required=False, alias='ops:file_ref', alias_priority=2), 'opsfile_size': FieldInfo(annotation=Union[Annotated[str, Strict(strict=True)], NoneType], required=False, alias='ops:file_size', alias_priority=2), 'opsmd5_checksum': FieldInfo(annotation=Union[Annotated[str, Strict(strict=True)], NoneType], required=False, alias='ops:md5_checksum', alias_priority=2), 'opsmime_type': FieldInfo(annotation=Union[Annotated[str, Strict(strict=True)], NoneType], required=False, alias='ops:mime_type', alias_priority=2)}

Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].

This replaces Model.__fields__ from Pydantic V1.

model_post_init(__context: Any) None

This function is meant to behave like a BaseModel method to initialise private attributes.

It takes context as an argument since that’s what pydantic-core passes when calling it.

Args:

self: The BaseModel instance. __context: The context.

opscreation_date: StrictStr | None
opsfile_name: StrictStr | None
opsfile_ref: StrictStr | None
opsfile_size: StrictStr | None
opsmd5_checksum: StrictStr | None
opsmime_type: StrictStr | None
to_dict() Dict[str, Any][source]

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

to_json() str[source]

Returns the JSON representation of the model using alias

to_str() str[source]

Returns the string representation of the model using alias